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INTRODUCTION

Sustainable management of natural resources 
is the most serious challenge facing agriculture 
globally [Hakim 2019]. While technological in-
novations and capital investments have effec-
tively increased food production [Pingali 2012], 
dominant farming practices profoundly damage 
ecosystems by disrupting natural cycles [Regan-
old and Wachter 2016]. Issues like soil degrada-
tion [Wienhold et al. 2004], salinization [Ren-
gasamy 2006], water and organic matter defi-
cits [Lal 2004], biodiversity declines [Huang et 
al. 2012], pesticide-resistant pathogens [Gould 
1998], and agricultural chemical contamination 
of groundwater [Schreinemachers and Tipraqsa 
2012] pose barriers to sustainable development. 
Many countries have tried increasing production 

by switching to perennial crops and expanding 
land exploitation. Technologies that drive growth 
while meeting food challenges without environ-
mental damage are becoming critical. 

“Green nanotechnologies” refer to synthe-
sizing nanomaterials while minimizing harm-
ful chemicals and harsh reactions [Savithramma 
et al. 2011; Makarov et al. 2014]. Using plants 
and microbes to produce nanomaterials is gain-
ing popularity due to the genetic and biochemical 
diversity of these organisms [Rajan et al. 2015], 
which can reduce metal ions to the nanoscale 
[Shekhawat and Arya 2009]. Applying nano-
materials in agriculture has revolutionized food 
production through eco-friendly natural resource 
management, unveiling new possibilities. 

Interest has skyrocketed recently in utilizing 
plant extracts and microbes to synthesize metal 
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nanoparticles via “green synthesis”, an alternative 
to conventional chemical and physical approaches 
requiring toxic reagents and extreme temperatures 
and pressures [Ahmed et al. 2016]. The main ad-
vantages of green methods are simplicity, low cost, 
and potentially less environmental impact. More-
over, abundant biologically active compounds in 
plants and microbes like polyphenols, alkaloids 
and flavonoids promote reducing metal ions into 
nanoparticles [Rajan et al. 2015].

MICROORGANISM DIVERSITY AS A 
SOURCE OF NANOMATERIALS

Microbes like bacteria, fungi and yeast offer 
promising green nanoparticle synthesis alterna-
tives to plants [Hulkoti and Taranath 2014]. Ad-
vantages include rapid growth, scalability and 
tremendous metabolic diversity from hundreds of 
millions of years of evolution [Singh et al. 2016]. 
For instance, soil Pseudomonas bacteria can re-
duce silver compounds into ~200 nm nanopar-
ticles [Shahverdi et al. 2007]. Similar proper-
ties occur in dairy Lactobacillus spp. [Nair and 
Pradeep 2002]. Filamentous Fusarium fungi syn-
thesize controllable silver nanowires over 100 μm 
long [Castro-Longoria et al. 2011]. Even greater 

nanoparticle shape/size diversity arises from yeast 
like Saccharomyces cerevisiae. Depending on 
conditions, they yield silver/gold nanospheres, 
nanotriangles or nanotubes [Kowshik et al. 2002]. 
Such morphology control directly tunes optical, 
electrical and biological nanomaterial properties. 
These examples show microbes can ideally pro-
duce diverse advanced nanomaterials due to meta-
bolic flexibility and engineering potential.

NANOFERTILIZERS

Agricultural intensification and agrochemical 
usage have depleted and acidified soils [Schroder 
et al. 2011]. Moreover, traditional fertilizers exhibit 
limited nutrient bioavailability [Davis et al. 2012]. 
Promising alternatives utilize nanotechnology-
enabled fertilizers. Key advantages are precisely 
delivering nutrients at lower doses while maintain-
ing efficacy [Liu and Lal 2015]. For instance, nano-
crystalline calcium phosphate shows twofold great-
er lability versus standard phosphorus fertilizers 
[El-Ghany et al. 2021]. Similarly, nanoforms of mi-
cronutrients like zinc, copper and iron demonstrate 
enhanced bioactivity and can increase yields even 
at low concentrations [Raliya and Tarafdar 2013]. 
Also promising is stimulated release of growth reg-
ulators such as auxins and cytokinins from smart 

Figure 1. Challenges and potential solutions regarding the implications 
of green nanomaterials for sustainable agriculture
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nanoparticle carriers responding to rhizosphere 
stimuli [Bielach et al. 2012]. This facilitates precise 
belowground root system development control. 
Nanofertilizer usage could therefore significantly 
decrease application rates while improving nutrient 
delivery efficiency. This aligns with precision agri-
culture goals of minimizing environmental impacts 
while optimally leveraging inputs.

NANOPESTICIDES

Despite efficacy, traditional pesticides risk 
toxicity and environmental contamination [Dama-
las and Eleftherohorinos 2011]. Nanopesticides – 
nanoforms of active ingredients or carriers – could 
provide an alternative. Key nanopesticide advan-
tages are precisely delivering bioactive compounds 
with controlled release rates and doses [Kah and 
Hofmann 2014], enabling plant protection with 
less environmental impact. Graphene carriers 
[Chen et al. 2022], chitosan [Xu et al. 2018; Mehta 
et al. 2021] and silver nanoparticles [Kathiravan 
et al. 2014] have successfully combated patho-
gens and pests already. A prominent nanopesti-
cide achievement is pH-responsive ferrimagnetic 
nanoparticle carriers releasing agents [Xiang et 
al. 2017]. Highly porous materials like chitosan-
coated diatomite/Fe3O4 store significant bioactive 
payloads. Afterwards, magnetic retrieval collects 
residual nanoparticle carriers, enabling reuse or re-
moval without soil contamination. Such controlled 
release magnetic nanocarriers could revolutionize 
precise, sustainable crop protection delivery.

Cu-based nanoparticles

Cu ion antibacterial/antifungal properties 
are well-known, with Cu(OH)2NPs as the active 

ingredient in Kocide 3000 pesticide. Copper 
nanoparticles have shown efficacy against bacte-
rial and fungal plant pathogens [Yoon et al. 2007]. 
Comparative research found better CuNP perfor-
mance versus the fungicide bavistin (carbendaz-
im) [Kanhed et al. 2014]. Recently, Borgatta et 
al. [2018] compared CuONP and Cu3(PO4)2·3H2O 
nanoplate abilities to combat Fusarium oxyspo-
rum f. sp. niveum fusarium wilt in watermelon. In 
a greenhouse study, 10 mg/L Cu nanoplates sig-
nificantly reduced disease severity, outperforming 
1000 mg/L CuONPs. Further studies have dem-
onstrated CuNP efficacy in lowering Clavibacter 
michiganensis infection in tomatoes [Cumplido-
Nájera et al. 2019] and increasing cotton insect 
resistance with CuONPs [Van et al. 2016].

Ag-based nanoparticles

Rising fungal pathogen and pest resistance 
to chemical pesticides has focused attention on 
new crop protection approaches. Due to broad 
antibacterial properties, silver nanoparticles (Ag-
NPs) have attracted great interest as potential 
nanopesticides [Cromwell et al. 2017]. Ocsoy et 
al. (2013) synthesized DNA-wrapped graphene 
oxide-supported AgNPs (Ag@dsDNA@GO) and 
found 16 mg/L significantly inhibited cultivated 
Xanthomonas perforans, which causes 10-50% to-
mato yield losses to bacterial spot disease. Similar 
greenhouse results occurred with 100 mg/L Ag@
dsDNA@GO. Additionally, AgNPs have exhib-
ited nematicidal potential. Exposure to 30–150 
mg/mL AgNPs killed 99% of Meloidogyne spp. 
nematodes within 6 days [Cromwell et al. 2014]. 
In a field study, 150 mg/mL AgNPs reduced nema-
todes by 82% and 92% on days 2 and 4. Compared 
to chemicals, green AgNPs synthesized with plant 
or bacterial extracts as reducing/stabilizing agents 

Figure 2. Different types of nanoparticles
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are more environmentally friendly [Mishra et al. 
2014]. Mishra et al. [2014] used the plant growth-
promoting bacterium Serratia sp. to biosynthesize 
AgNPs with potent antifungal activity against 
the wheat spot blotch pathogen Bipolaris soro-
kiniana. Narayanan and Park [2014] synthesized 
~16 nm AgNPs with turnip leaf extract possessing 
broad spectrum wood-rotting fungal activity. De-
spite promising agriculture applications, potential 
AgNP phytotoxicity has raised concerns. Foliar 
0.4 mg/plant AgNPs induced oxidative stress in 
cucumber leaves [Zhang et al. 2011]. Further re-
search on dose responses and biological impacts 
is essential to determine safe usage.

Si-based nanoparticles

Numerous studies indicate silicon enhances 
plant resistance to abiotic and biotic stresses via 
undetermined mechanisms [Guntzer et al. 2010, 
Wang et al. 2022]. For example, SiO2 nanopar-
ticles improve tomato seed germination [Sid-
diqui and Al-Whaibi 2014]. Mesoporous silicon 
nanoparticles (MSNs) also benefit plants. MSNs 
accumulated in wheat and lupine chloroplasts 
during hydroponic growth, stimulating photosyn-
thesis. MSNs increased seed germination, bio-
mass, protein and chlorophyll without oxidative 
stress [Sun et al. 2016]. Comparing nanoparticles 
in maize showed SiO2NPs least disturbed plant 
physiology [Sillen et al. 2015]. Moreover, nano-
SiO2 enhances strawberry growth and yield under 
salt stress [Avestan et al. 2019]. SiO2NPs may 
also affect potassium homeostasis, representing a 
promising drought alleviation research direction.

Mg-based nanoparticles

Magnesium has essential roles in chlorophyll 
synthesis and photosynthesis [Li et al. 2001; Kash-
em and Kawai 2007]. Studies show magnesium 
nanoparticles (MgNPs) beneficially impact plant 
growth and development. For example, MgNPs 
significantly increased photosynthesis and biomass 
in black-eyed peas while altering cell membrane 
permeability [Delfani et al. 2014]. Similar biomass 
and root growth increases occurred with biosynthe-
sized MgNPs in wheat [Dawas and Ali 2022]. Pro-
posed mechanisms include improved light energy 
capture in leaves. MgONPs also increase antioxi-
dant enzymes like SOD and POD in tobacco [Cai et 
al. 2018b]. Since magnesium is an essential micro-
nutrient where MgNPs provide added antioxidant 

boosts, agricultural utilization holds promise – both 
correcting deficiencies and improving stress toler-
ance. For instance, MgONPs far more effectively 
inhibited tobacco growth of the phytopathogen Ral-
stonia solanacearum versus MgO [Cai et al. 2018a].

Mo-based nanoparticles

Molybdenum cofactors nitrogenase and nitrate 
reductase perform key roles in plant nitrogen fixa-
tion, reduction and transport [Alam et al. 2015]. 
Investigated for exceptional electronic, optical and 
catalytic semiconductor properties, MoS2 nanopar-
ticles impact remains little studied in plants [Parz-
inger et al. 2015]. One study showed 125 mg/L 
MoS2 nanoparticles increased rice biomass and 
leaf chlorophyll without affecting seed germina-
tion, malondialdehyde or antioxidants. MoS2 also 
upregulated rice aquaporin genes, though the chlo-
rophyll increase mechanism is undetermined [Li 
et al. 2018]. Recently, Chen et al. [2018] synthe-
sized MoS2 nanoparticles that mimic antioxidant 
enzyme (SOD, CAT, POD) activity. Additionally, 
1000 mg/L MoS2 nanoparticles significantly inhib-
ited E. coli growth and viability [Wu et al. 2016]. 
These findings suggest potential roles enhancing 
plant photosynthesis and stress resilience, meriting 
further research.

IMPROVING SOIL QUALITY AND WATER 
RETENTION USING NANOTECHNOLOGY

Declining arable soil fertility stems primarily 
from low organic matter and insufficient macro- 
and micronutrients [Canton 2021]. This affects both 
light and heavy soils, with the latter frequently con-
taining excessive anthropogenic heavy metals [Yang 
and Jia 2024]. Nanomaterial application shows 
promise in this context. Due to extensive surface 
area, specialized morphology and tuned reactivity, 
nanomaterials can selectively bind contaminants, 
steadily discharge nutrients, and retain soil moisture 
[Du et al. 2011]. For example, carbon nanotubes 
and graphene increase soil water retention up to 10-
fold, boosting drought tolerance [Mukhopadhyay 
2014]. Iron nanoparticles immobilize problematic 
elements like arsenic and cadmium [Wang et al. 
2018]. Chitosan, cellulose and starch nanocarriers 
provide controlled nitrogen fertilizer release, ben-
efiting yields [Liu and Lal 2015]. Precision reme-
diation effects at low doses indicate promise com-
bining environmental and production objectives via 
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nanomaterials. However, safely implementing such 
large-scale soil applications requires extensive fur-
ther research [Schwab et al. 2016].

ENHANCING PLANT GROWTH 
AND ABIOTIC STRESS TOLERANCE 
WITH NANOPARTICLES

Abiotic stresses like drought, extreme temper-
atures, salinity or heavy metals constitute the pri-
mary cause of over 50% average crop loss world-
wide [Atkinson and Urwin 2012]. Cereals, roots 
and legumes may suffer 70–80% yield decreases 
[Wang et al. 2004]. Adverse effects manifest 
across levels, from germination inhibition through 
impeded growth/development to ultrastructural 
and genetic expression changes [Prasad et al. 
2021]. For example, drought disrupts plant water 

relations, closing stomata, limiting photosynthe-
sis/transpiration and inhibiting cell division/differ-
entiation. High temperatures damage membranes, 
proteins and nucleic acids. Salinity interferes with 
nutrient and hormone homeostasis. Heavy metals 
induce oxidative stress by binding proteins and 
disrupting signaling [Tang et al. 2023].

Key plant oxidative stress defense mecha-
nisms involve superoxide dismutase (SOD), cata-
lase (CAT) and peroxidases (POD) neutralizing 
reactive oxygen species (ROS) [Mukhopadhyay 
2014]. Under abiotic stress, excessive ROS ac-
cumulate in organelles, damaging DNA, lipids 
and proteins [Gill and Tuteja 2010]. Nanoparti-
cles like CeO2, TiO2, ZnO, C60 and Fe2O3 exhibit 
ROS scavenging antioxidant properties [Nel et al. 
2006]. As nanoscale redox switches, they acceler-
ate superoxide dismutation and protect photosyn-
thesis [Zuverza-Mena et al. 2017]. Consequently, 

Figure 3. NPs are used to protect plants from stress and modulate plant growth

Table 1. Nanomaterials and their application for the removal of selected soil contaminants
Nanomaterial Contaminant in soil Reference

Nano-Fe/Cu Nitrate ions [Shubair et al., 2018]

Nano-Fe3O4@C-COOH Pb [Ma et al., 2020]

Single-walled carbon nanotubes
DDT [Zhang et al., 2017]

Polycyclic aromatic hydrocarbons [Yang et al., 2006]

Multiwalled carbon nanotubes Pb [Konczyk et al., 2019]

Modified carbon black nanoparticle Cd, Ni [Cheng et al., 2019]

Magnetite nanoparticles Cd, Pb [Yang et al., 2018]
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engineering plants with these nanoparticles en-
hances drought, salinity and heavy metal toler-
ance, reducing yield losses [Faizan et al. 2021; 
Faizan et al. 2023]. Stress-mitigating nanopar-
ticle plant engineering shows promise to alleviate 
unfavorable environment-driven crop losses.

IMPACT OF ENZYMATIC NANOPARTICLES 
ON PLANT STRESS TOLERANCE

Recently, nanomaterials exhibiting antioxi-
dant enzyme activity like superoxide dismutase 
(SOD), catalase (CAT) and peroxidases (POD) 
have emerged, including CeO2, C60 fullerene, 
gold and platinum nanoparticles and transition 
metal oxides [Debnath et al. 2015, Ding et al. 
2023]. For example, catalytic MoS2 nanosheets 
effectively neutralize superoxide, hydrogen per-
oxide and lipid peroxides [Chen et al. 2018]. Simi-
lar properties occur with biocompatible, function-
alizable gold (AuNPs) and platinum nanoparticles 
(PtNPs) [He et al. 2012; Bai et al. 2017]. More-
over, enzyme-mimicking nanozymes (CeO2, C60) 
stimulate plant growth and stress tolerance not 
only via reactive oxygen species elimination. C60 
fullerene nanoparticles mitigated oxidative stress 
in drought-stressed sugar beet by intracellular wa-
ter provision [Borišev et al. 2016]. CeO2 nanopar-
ticles increased biomass, chlorophyll and photo-
synthesis in salinized winter oilseed rape without 
completely alleviating effects. Nano-CeO2 also 
shortened root apoplastic barriers, enabling shoot 
sodium ion transport to decrease root accumula-
tion [Rossi et al. 2016]. Iron oxide nanoparticles 
(γ-Fe2O3) reduced drought-induced hydrogen 
peroxide and lipid peroxidation in oilseed rape 
[Palmqvist et al. 2017]. With similar properties, 
the micronutrient manganese oxide Mn3O4 also 
shows agricultural promise [Yao et al. 2018].

IMPACTS OF NON-ENZYMATIC 
NANOPARTICLES ON PLANTS 
STRESS TOLERANCE 

Certain non-enzymatic nanoparticles also en-
hance plant stress resilience. For example, zero-
valent iron nanoparticles (nZVIs) stimulate proton 
pump activity, increasing stomatal conductance 
and leaf surface area [Younas et al. 2023], though 
without affecting drought sensitivity. Further re-
search should explore iron nanoparticle impacts on 

plants. Another mechanism involves upregulating 
antioxidant system gene expression, increasing 
natural plant stress tolerance, as shown for TiO2 
[Latef et al. 2018], SiO2 [Behboudi et al. 2018] 
and ZnO [Siddiqui et al. 2014]. These regulate 
enzymes like superoxide dismutase (SOD) and 
peroxidases (POD), benefiting growth and yield. 
Additionally, ZnO and iron nanoparticles decrease 
heavy metal uptake and toxicity - including cad-
mium and arsenic [Tripathi et al. 2013; Manzoor 
et al. 2021] – highlighting prospective phytoreme-
diation applications. These findings show nano-
structures without enzymatic activity also protect 
plants from environmental stresses, though under-
lying mechanisms need further elucidation.

CONCLUSIONS

Rising food demand and agricultural chemi-
cal hazards are driving green nanotechnology 
development. Sustainably synthesized plant and 
microbe nanomaterials could revolutionize agri-
culture via nanosensors detecting toxins, micro-
nutrient delivery, soil/water regulation, growth 
enhancement and agrochemical minimization. 
However, as no single nanotechnology enables 
complete sustainability, this review discusses var-
ied sustainable nanomaterial applications to im-
prove yield, protection and monitoring through 
innovative practices. Key conclusions include: 
(i) microbes efficiently and scalably synthesize 
nanomaterials with unique agricultural proper-
ties, (ii) nanoparticles precisely deliver nutrients/
regulators as nanofertilizers and target pathogens 
as nanopesticides, minimizing environmental 
contamination, (iii) certain nanoparticles enhance 
plant stress tolerance to drought, salinity and met-
als through antioxidant effects or genetic regula-
tion, (iv) nanomaterials help alleviate agricultural 
problems like nutrient deficiencies, low water re-
tention and contamination by controlled nutrient/
water release and pollutant binding, (v) significant 
knowledge gaps remain regarding nanoparticle en-
vironmental fate and safety requiring addressment 
prior to large-scale agricultural implementation. 
Nevertheless, research and commercial progress 
in this field is still limited. Elucidating complex 
nanoparticle environmental behaviors, thoroughly 
evaluating functionality and distributions plus es-
tablishing robust governmental oversight are es-
sential to fully harness green nanotechnology’s 
potential for enabling sustainable agriculture. 
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